Accelerating dual cardiac phase images using undersampled radial phase encoding trajectories.
نویسندگان
چکیده
A three-dimensional dual-cardiac-phase (3D-DCP) scan has been proposed to acquire two data sets of the whole heart and great vessels during the end-diastolic and end-systolic cardiac phases in a single free-breathing scan. This method has shown accurate assessment of cardiac anatomy and function but is limited by long acquisition times. This work proposes to accelerate the acquisition and reconstruction of 3D-DCP scans by exploiting redundant information of the outer k-space regions of both cardiac phases. This is achieved using a modified radial-phase-encoding trajectory and gridding reconstruction with uniform coil combination. The end-diastolic acquisition trajectory was angularly shifted with respect to the end-systolic phase. Initially, a fully-sampled 3D-DCP scan was acquired to determine the optimal percentage of the outer k-space data that can be combined between cardiac phases. Thereafter, prospectively undersampled data were reconstructed based on this percentage. As gold standard images, the undersampled data were also reconstructed using iterative SENSE. To validate the method, image quality assessments and a cardiac volume analysis were performed. The proposed method was tested in thirteen healthy volunteers (mean age, 30years). Prospectively undersampled data (R=4) reconstructed with 50% combination led high quality images. There were no significant differences in the image quality and in the cardiac volume analysis between our method and iterative SENSE. In addition, the proposed approach reduced the reconstruction time from 40min to 1min. In conclusion, the proposed method obtains 3D-DCP scans with an image quality comparable to those reconstructed with iterative SENSE, and within a clinically acceptable reconstruction time.
منابع مشابه
Accelerating the acquisition of the 3D Dual Cardiac Phase technique using RPE trajectories
Background A 3D Dual Cardiac Phase (3D-DCP) scan was proposed to obtain systolic and diastolic images with equivalent quality and scan time compared to the 3D single cardiac phase acquisition (Uribe et al, Radiology 2008). In this work, we propose to accelerate the acquisition and reconstruction of the 3D-DCP approach by sharing information from the outer k-space of both cardiac phases using Ra...
متن کاملReal-time phase-contrast MRI of cardiovascular blood flow using undersampled radial fast low-angle shot and nonlinear inverse reconstruction.
Velocity-encoded phase-contrast MRI of cardiovascular blood flow commonly relies on electrocardiogram-synchronized cine acquisitions of multiple heartbeats to quantitatively determine the flow of an averaged cardiac cycle. Here, we present a new method for real-time phase-contrast MRI that combines flow-encoding gradients with highly undersampled radial fast low-angle shot acquisitions and phas...
متن کاملAdvances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes.
PURPOSE To provide multidimensional velocity compensation for real-time phase-contrast flow MRI. METHODS The proposed method introduces asymmetric gradient echoes for highly undersampled radial FLASH MRI with phase-sensitive image reconstruction by regularized nonlinear inversion (NLINV). Using an adapted gradient delay correction the resulting image quality was analyzed by simulations and ex...
متن کاملProspective High-Resolution Respiratory-Resolved Whole-Heart MRI for Image-Guided Cardiovascular Interventions
Cardiovascular diseases, including arrhythmias and heart failure, are commonly treated with percutaneous procedures guided by X-ray fluoroscopy. The visualization of the targeted structures can be enhanced using preacquired respiratory-resolved anatomic data (dynamic roadmap), which is displayed as an overlay onto X-ray fluoroscopy images. This article demonstrates how dynamic roadmaps using an...
متن کاملClassifying the Epilepsy Based on the Phase Space Sorted With the Radial Poincaré Sections in Electroencephalography
Background: Epilepsy is a brain disorder that changes the basin geometry of the oscillation of trajectories in the phase space. Nevertheless, recent studies on epilepsy often used the statistical characteristics of this space to diagnose epileptic seizures. Objectives: We evaluated changes caused by the seizures on the mentioned basin by focusing on phase space sorted by Poincaré sections. Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance imaging
دوره 34 7 شماره
صفحات -
تاریخ انتشار 2016